Given 3 circles, each intersecting the other two in two points, the line segments connecting their points of intersection satisfy: ace/bdf = 1

## Morley’s Trisector Theorem

In any triangle, the 3 points of intersection of the adjacent angle trisectors ALWAYS form an equilateral triangle (in blue), called the **Morley triangle**.

## Surprising Limit

Amazingly, this sequence of fractions converges to 0.70710678118…, or to be precise, to √2/2. The sequence is related to the Prouhet-Thue-Morse sequence.

## Prime Fractions

Did you know? You can write the number 1 as a sum of 48 different fractions, where every numerator is 1 and every denominator is a product of exactly two primes.

This problem is related to the Egyptian fractions.

## Math-Magic Vanishing Space

Inspired from the astrological tables, here is a new puzzle of my creation designed according to the ‘Golden Number Rules’, which is reflected in the proportion of each single piece of the game. Thanks to the balanced dimensions of its pieces, this puzzle acquires some intriguing magical properties!

This “math-magical” puzzle is composed of a tray in which the pieces are assembled.

## Sum of Infinite Power Series

Have a look at the two distinct sums of series of powers below.

Same procedure, different result accuracy levels… Can you guess what went wrong in the operation of fig. 2?