Equable Triangles

There are only five integer-sided triangles whose area is numerically equal to its perimeter:
(5, 12, 13), (6, 8, 10), (6, 25, 29), (7, 15, 20), and (9, 10, 17)
As you can see from the picture, only 2 of them are right triangles.

Infinite Pythagorean Triplets

Consider the following simple progression of whole and fractional numbers (with odd denominators):
1 1/3, 2 2/5, 3 3/7, 4 4/9, 5 5/11, 6 6/13, 7 7/15, 8 8/17, 9 9/19, …
Any term of this progression can produce a Pythagorean triplet, for instance:
4 4/9 = 40/9; the numbers 40 and 9 are the sides of a right triangle, and the hypotenuse is one greater than the largest side (40 + 1 = 41).

Target 10

Here is a little puzzle of our creation you can make with your kids or in class…

“Stubborn” Number 33

It is conjectured that n is a sum of 3 cubes if n is a number that is not congruent to 4 or 5 mod 9. The number 33 enters this category, but for 64 years no solutions emerged — that is, whether the equation 33 = x³ + y³ + z³ has an integer solution. Continue reading ““Stubborn” Number 33″

Sangaku: Semicircle inscribed in a right triangle

Find the radius r of the semicircle inscribed in the right triangle below:

show solution

Smallest Prime Number Magic Square

American mathematician Harry L. Nelson won the challenge to produce a 3 × 3 magic square containing the smallest consecutive primes:

Fibonacci Spiral Jigsaw Puzzle

Each piece of this puzzle is similar (the same shape at a different size). The placement of the pieces is based on the golden angle (≈137.5º), and results in a pattern frequently found in nature (phyllotaxis), for instance on sunflowers. The puzzle features 8 spirals in one direction, and 13 in the other. You can build your own Fibonacci spiral puzzle by following John Edmark’s tutorial.

Illusive Number

If you can see the 8 in the middle of the 8 of diamonds you are a visual thinker rather than a verbal thinker.