## Geometric Passe-muraille

A 3D regular hexahedron solid (cube) passing through a 2D plane:

## Trefoil Klein Bottle

The “Klein Bottle” is what happens when you merge two “Möbius Strips” together: the resulting shape will still have only one side – with its inside and outside merging into one. Obectively, such a paradoxical shape is clearly not possible within our 3-D reality and requires a fourth dimensional jump at some point to make it all come together. Also, because true Klein bottles do not have discernible “inside” or “outside”, they have ZERO VOLUME. As a result, these objects can only be simulated as an “impossible art” in our world, or only modeled with a “fake” 3-D intersection, instead of a true extra-dimensional joint. There are a lot of Klein Bottle model variants, this one is the most intriguing.

## Transform a Ball with 2 Holes into a CD

Topology is a fascinating branch of mathematics that describes the properties of an object that remain unchanged under “smooth” deformations. If we imagine objects to be made of clay, a smooth deformation is any deformation that does not require the discontinuous action of a tear or the punching of a hole, such as bending, squeezing and shaping. These deformations are called “continuous deformations“. Continue reading “Transform a Ball with 2 Holes into a CD”